Showing posts with label 2012 drivers. Show all posts
Showing posts with label 2012 drivers. Show all posts
Tuesday, January 10, 2012
Designing a F1 car: bodywork limitations
To talk about the design of 2012 cars, we need to understand one of the major aerodynamic changes of this era. Since 2009, Formula One will never be the same again. It has been given a completely different look and a much reduced development cost by the introduction of the most radical (aerodynamic) changes since banning the ground effect cars.
Marked in yellow is the most crucial part to improve overtaking. In this area, the FIA set very stringent regulations by specifying exactly the aerofoil dimensions that go here. The aim was to neutralise the middle part of the front wing as it is the most susceptible to a leading car's wake.
3.7.3 : Forward of a point lying 450mm ahead of the front wheel centre line and less than 250mm from the car centre line and less than 125mm above the reference plane, only one single section may be contained within any longitudinal vertical cross section parallel to the car centre line. Furthermore, with the exception of local changes of section where the bodywork defined in Article 3.7.2 attaches to this section, the profile, incidence and position of this section must conform to an FIA specified profile.
The green area then denotes a zone where all sorts of bodywork is allowed, as long as its surface is no more than 20,000mm².
3.7.4 : In the area bounded by lines between 450mm and 1000mm ahead of the front wheel centre line, 250mm and 400mm from the car centre line and between 75mm and 275mm above the reference plane, the projected area of all bodywork onto the longitudinal centre plane of the car must be no more than 20,000mm².
Article 3.7.5 is marked in the image with red, which 3.7.6-7 relate to the blue, outer parts of the front wing.
3.7.5 : Ahead of the front wheel centre line and between 750mm and 840mm from the car centre line there must be bodywork with a projected area of no less than 95,000mm2 in side view.
3.7.6 : Ahead of the front wheel centre line and between 840mm and 900mm from the car centre line there must be bodywork with a projected area of no less than 28,000mm2 in plan view. Furthermore, when viewed from underneath, the bodywork in this area must form one continuous surface which may not be more than 100mm above the reference plane.
3.7.7 : Any longitudinal vertical cross section taken through bodywork ahead of the front wheel centre line and between 840mm and 900mm from the car centre line must contain an area no greater than 15,000mm2.
Article 3.18 of the technical regulations specify a novelty in Formula One. It defines the area where driver-adjustable bodywork is allowed. As such, the area marked yellow defines the bounds where bodywork is allowed to "change incidence while the vehicle is in motion within a maximum range of 6°, provided any such change maintains compliance with all of the bodywork dimensional regulations."
At the same time, the rules also stipulate that the movement is strictly limited to be controlled by the driver by means of the standard ECU. Except when the car is in the pit lane, a maximum of two adjustments may be made within any single lap of a circuit.
Note the area under the nose, in between the front wheels where no bodywork is allowed. It is actually this rule, specified in 3.11.2 that is the subject deciding whether the nose cone of the Renault R29 is allowed.
3.11.2 : With the exception of the air ducts described in Article 11.4, in side view, there must be no bodywork in the area formed by two vertical lines, one 325mm behind the front wheel centre line, one 450mm ahead of the front wheel centre line, one diagonal line intersecting the vertical lines at 100mm and 200mm above the reference plane respectively, and one horizontal line on the reference plane.
In the above images, all green areas mark the total surface that prohibits aerodynamic bodywork extensions, as specified in article 3.8.4.
Any vertical cross section of bodywork normal to the car centre line situated in the volumes defined below must form one tangent continuous curve on its external surface. This tangent continuous curve may not contain any radius less than 75mm:
* the volume between 50mm forward of the rear wheel centre line and 300mm rearward of the rear face of the cockpit entry template, which is more than 25mm from the car centre line and more than 100mm above the reference plane ;
* the volume between 300mm rearward of the rear face of the cockpit entry template and the rear face of the cockpit entry template, which is more than 125mm from the car centre line and more than 100mm above the reference plane
* the volume between the rear face of the cockpit entry template and 450mm forward of the rear face of the cockpit entry template, which is more than 350mm from the car centre line and more than 100mm above the reference plane.
The surfaces lying within these volumes, which are situated more than 55mm forward of the rear wheel centre line, must not contain any apertures (other than those permitted by Article 3.8.5) or contain any vertical surfaces which lie normal to the centre line of the car.
3.8.5 : Once the relevant bodywork surfaces are defined in accordance with Article 3.8.4, apertures may be added for the following purposes only :
* single apertures either side of the car centre line for the purpose of exhaust exits. These apertures may have a combined area of no more than 50,000mm² when projected onto the surface itself.
* apertures either side of the car centre line for the purpose of allowing suspension members and driveshafts to protrude through the bodywork. No such aperture may have an area greater than 12,000mm² when projected onto the surface itself.
The regulations therefore ban CART-alike flipups, winglets, midwings, shark gills chimneys and McLaren's bull horns in the specified areas. Given the limited areas where bodywork is allowed, it has also become nearly impossible to add airbox wings like Williams and Toyota have often used in the recent past.
Further limitations on allowed bodywork just ahead of the rear wheels have also made sure that most of the rear wheels is free into the airstream - mark how the maximum height of bodywork ahead of the rear wheels decreases in two steps. This alone would have banned flipups as we used to know them.
First of all, the rear wing height has been increased to match the car's maximum height, while its width is reduced. These changes make the rear wing less efficient while also simplifying its design. Previously, due to the proximity of the rear wing and the diffuser, the rear wing's design itself greatly influenced the diffuser because of its powerful upwash. By its increased height, the rear wing's own upwash is more independent from the rear of the rear, making it easier to design and test.
3.12.7 : No bodywork which is visible from beneath the car and which lies between the rear wheel centre line and a point 350mm rearward of it may be more than 175mm above the reference plane. Any intersection of the surfaces in this area with a lateral or longitudinal vertical plane should form one continuous line which is visible from beneath the car. A single break in the surface is permitted solely for the engine starter device (5.15).
Additionally, any bodywork in this area must produce uniform, solid, hard, continuous, rigid (no degree of freedom in relation to the body/chassis unit), impervious surfaces under all circumstances.
Apart from these changes however, other specifications for the rear wing have remained the same. There is still a maximum of 2 horizontal panels allowed in the upper area of the rear wing. This limitation is only valid in the areas that are more than 75mm away from the centreline of the car and hence does not outlaw Toyota's 2008 rear wing. Just like last year these elements must be supported with a spacer to ensure its rigidity.
The rear wing endplates meanwhile still are similar in width but can now extend from the level of the car's stepped plane to the car's maximum height. The Red Bull RB5 for instance greatly puts this to use by extending the end plates to the floor, making these also effective for the diffuser - and again adding to the coupling between rear wing and diffuser. Only the area marked as yellow does require a minimal surface to ensure advertising space.
3.10.8 : In side view, the projected area of any bodywork lying between 300mm and 950mm above the reference plane and between the rear wheel centre line and a point 600mm behind it must be greater than 330,000mm².
The diffuser itself has been moved backward compared to 2008. While its maximum height was increased to 175mm, the tall central channel is now missing, resulting in a net downforce decrease. The central part of the car still allows the diffuser to be a little longer, and when designed wisely can be helped by the rear impact shock absorber (between 200mm and 400mm above the reference plane).
Front wing
One of the crucial changes introduced by the overtaking working group is a major shift in front wing filosophy. Because if was found that the smaller and higher wing were counter-productive for overtaking, the design jumped 10 years backward. The new wing is now allowed to be wider and low to the ground. The image marks the most important areas that specify where bodywork is allowed. Any area outside of the drawn zones is forbidden - leaving aside the nose cone which was left out for simplicity.Marked in yellow is the most crucial part to improve overtaking. In this area, the FIA set very stringent regulations by specifying exactly the aerofoil dimensions that go here. The aim was to neutralise the middle part of the front wing as it is the most susceptible to a leading car's wake.
3.7.3 : Forward of a point lying 450mm ahead of the front wheel centre line and less than 250mm from the car centre line and less than 125mm above the reference plane, only one single section may be contained within any longitudinal vertical cross section parallel to the car centre line. Furthermore, with the exception of local changes of section where the bodywork defined in Article 3.7.2 attaches to this section, the profile, incidence and position of this section must conform to an FIA specified profile.
The green area then denotes a zone where all sorts of bodywork is allowed, as long as its surface is no more than 20,000mm².
3.7.4 : In the area bounded by lines between 450mm and 1000mm ahead of the front wheel centre line, 250mm and 400mm from the car centre line and between 75mm and 275mm above the reference plane, the projected area of all bodywork onto the longitudinal centre plane of the car must be no more than 20,000mm².
Article 3.7.5 is marked in the image with red, which 3.7.6-7 relate to the blue, outer parts of the front wing.
3.7.5 : Ahead of the front wheel centre line and between 750mm and 840mm from the car centre line there must be bodywork with a projected area of no less than 95,000mm2 in side view.
3.7.6 : Ahead of the front wheel centre line and between 840mm and 900mm from the car centre line there must be bodywork with a projected area of no less than 28,000mm2 in plan view. Furthermore, when viewed from underneath, the bodywork in this area must form one continuous surface which may not be more than 100mm above the reference plane.
3.7.7 : Any longitudinal vertical cross section taken through bodywork ahead of the front wheel centre line and between 840mm and 900mm from the car centre line must contain an area no greater than 15,000mm2.
Article 3.18 of the technical regulations specify a novelty in Formula One. It defines the area where driver-adjustable bodywork is allowed. As such, the area marked yellow defines the bounds where bodywork is allowed to "change incidence while the vehicle is in motion within a maximum range of 6°, provided any such change maintains compliance with all of the bodywork dimensional regulations."
At the same time, the rules also stipulate that the movement is strictly limited to be controlled by the driver by means of the standard ECU. Except when the car is in the pit lane, a maximum of two adjustments may be made within any single lap of a circuit.
Bodywork around the front wheels
The dimensions of allowed bodywork around the front wheels have also been altered to remove all types of appendages on the car. It was found that the teams spent lots of time developing turning vanes in this area. Since the FIA considers this 'invisible' to the fans, they have moved to simplify this area too, immediately helping to reduce the aerodynamic development costs.Note the area under the nose, in between the front wheels where no bodywork is allowed. It is actually this rule, specified in 3.11.2 that is the subject deciding whether the nose cone of the Renault R29 is allowed.
3.11.2 : With the exception of the air ducts described in Article 11.4, in side view, there must be no bodywork in the area formed by two vertical lines, one 325mm behind the front wheel centre line, one 450mm ahead of the front wheel centre line, one diagonal line intersecting the vertical lines at 100mm and 200mm above the reference plane respectively, and one horizontal line on the reference plane.
Getting rid of winglets
For several years it was found that the unlimited addition of flipups, winglets and gills had to be limited somehow. Powered by the need to reduce costs, several areas of the bodywork ahead of the rear wheels are now bound to be continuous sections without apertures - apart for the exhausts and suspension beams.In the above images, all green areas mark the total surface that prohibits aerodynamic bodywork extensions, as specified in article 3.8.4.
Any vertical cross section of bodywork normal to the car centre line situated in the volumes defined below must form one tangent continuous curve on its external surface. This tangent continuous curve may not contain any radius less than 75mm:
* the volume between 50mm forward of the rear wheel centre line and 300mm rearward of the rear face of the cockpit entry template, which is more than 25mm from the car centre line and more than 100mm above the reference plane ;
* the volume between 300mm rearward of the rear face of the cockpit entry template and the rear face of the cockpit entry template, which is more than 125mm from the car centre line and more than 100mm above the reference plane
* the volume between the rear face of the cockpit entry template and 450mm forward of the rear face of the cockpit entry template, which is more than 350mm from the car centre line and more than 100mm above the reference plane.
The surfaces lying within these volumes, which are situated more than 55mm forward of the rear wheel centre line, must not contain any apertures (other than those permitted by Article 3.8.5) or contain any vertical surfaces which lie normal to the centre line of the car.
3.8.5 : Once the relevant bodywork surfaces are defined in accordance with Article 3.8.4, apertures may be added for the following purposes only :
* single apertures either side of the car centre line for the purpose of exhaust exits. These apertures may have a combined area of no more than 50,000mm² when projected onto the surface itself.
* apertures either side of the car centre line for the purpose of allowing suspension members and driveshafts to protrude through the bodywork. No such aperture may have an area greater than 12,000mm² when projected onto the surface itself.
The regulations therefore ban CART-alike flipups, winglets, midwings, shark gills chimneys and McLaren's bull horns in the specified areas. Given the limited areas where bodywork is allowed, it has also become nearly impossible to add airbox wings like Williams and Toyota have often used in the recent past.
Further limitations on allowed bodywork just ahead of the rear wheels have also made sure that most of the rear wheels is free into the airstream - mark how the maximum height of bodywork ahead of the rear wheels decreases in two steps. This alone would have banned flipups as we used to know them.
A rear end with less downforce and reduced efficiency
The rear end changes are all designed by the overtaking working group as they aim to reduce downforce while also creating a wake that is more useful for a trailing car.First of all, the rear wing height has been increased to match the car's maximum height, while its width is reduced. These changes make the rear wing less efficient while also simplifying its design. Previously, due to the proximity of the rear wing and the diffuser, the rear wing's design itself greatly influenced the diffuser because of its powerful upwash. By its increased height, the rear wing's own upwash is more independent from the rear of the rear, making it easier to design and test.
3.12.7 : No bodywork which is visible from beneath the car and which lies between the rear wheel centre line and a point 350mm rearward of it may be more than 175mm above the reference plane. Any intersection of the surfaces in this area with a lateral or longitudinal vertical plane should form one continuous line which is visible from beneath the car. A single break in the surface is permitted solely for the engine starter device (5.15).
Additionally, any bodywork in this area must produce uniform, solid, hard, continuous, rigid (no degree of freedom in relation to the body/chassis unit), impervious surfaces under all circumstances.
Apart from these changes however, other specifications for the rear wing have remained the same. There is still a maximum of 2 horizontal panels allowed in the upper area of the rear wing. This limitation is only valid in the areas that are more than 75mm away from the centreline of the car and hence does not outlaw Toyota's 2008 rear wing. Just like last year these elements must be supported with a spacer to ensure its rigidity.
The rear wing endplates meanwhile still are similar in width but can now extend from the level of the car's stepped plane to the car's maximum height. The Red Bull RB5 for instance greatly puts this to use by extending the end plates to the floor, making these also effective for the diffuser - and again adding to the coupling between rear wing and diffuser. Only the area marked as yellow does require a minimal surface to ensure advertising space.
3.10.8 : In side view, the projected area of any bodywork lying between 300mm and 950mm above the reference plane and between the rear wheel centre line and a point 600mm behind it must be greater than 330,000mm².
The diffuser itself has been moved backward compared to 2008. While its maximum height was increased to 175mm, the tall central channel is now missing, resulting in a net downforce decrease. The central part of the car still allows the diffuser to be a little longer, and when designed wisely can be helped by the rear impact shock absorber (between 200mm and 400mm above the reference plane).
Watch F1 races live here:
TheFastCastorFeeling a F1 car
Just like any racing car, but more so, a Formula 1 car is like a living organism in the way it requires constant attention just to keep it functioning. The engine oil needs to be pre-warmed as do the tires, yet heat must be diverted away from other components. The brakes don't start working properly until the carbon-fiber discs are at around 932 degrees F, yet get them much above 1,472 degrees F for any length of time and they will oxidize, heating themselves out of existence as the air passes over them.
There are tiny operating parameters and everything requires constant monitoring and input. F1 cars are ridiculously sensitive, highly strung thoroughbreds that sit on a knife-edge of equilibrium that is constantly evolving – which is just as it should be. F1 isn't supposed to be easy or simple.
But for all that the processes are maintained on a knife-edge, the car must never feel like that to the driver. For him to do his best stuff requires the car beneath him to feel malleable, responsive to his every input with a fidelity that allows him to not even think about the mechanics of it all. The limit should be a place he can sit on with impunity while expressing his competitive desire. That's all about finding the appropriate setup.
Push the car hard enough and one end of it or the other runs out of grip. Which end and how predictable is the transition is what allows the driver to access that limit according to his personal preferences. But because of that trait of everything being in a state of evolution – the track, the car's specification from one race to the next, variations in track layout, etc. – that sweet spot needs to be constantly found and re-found. Adjustment of myriad setup tools – from simple suspension rates, tire pressures or front and rear wing levels to the more subtle aids of steering ratios, brake master cylinders, ride heights and an apparently limitless variety of electronic settings for engine, engine braking and differential settings – help the driver to find that place, with the aid of his race engineer and vehicle dynamicists.
A team used to arrive at a track with the setup spectrum theoretically unlimited but the tools for where on that spectrum to choose – the driver's feel and the intuitive knowledge of his engineer – still fairly basic. Today, with the huge advances made in simulation, a team arrives with 90 percent – maybe more – of the setup already defined. The big chunk of setup-derived lap time is done at the factory beforehand so that, at the track, the driver is working within parameters that can influence things only by a few tenths of a second.
Dave Greenwood is Marussia Virgin's chief engineer and was a vehicle dynamicist at the Renault team when it last won the World Championship, in 2006. He explains: “The aero levels most appropriate to the circuit and the ride-height range are set at the factory. The damping rates are set then, too, on the seven-post rig or on the simulated seven-poster. This is because the packaging of an F1 car is so tight that it would just be impractical to be changing dampers during the limited amount of running time you have on a grand prix weekend. It would be a nightmare. So what the driver has to play with at the track is a little bit of front wing flap angle, the spring rates and the various electronic settings.
“But you still need to check with the driver at the track, because the simulation is ‘perfect world.' For example, from India, a track with a lot of high-speed, long-duration corners, we arrived at Abu Dhabi, a track with mainly slow corners, so we ran a lower rear ride height because the car isn't being pressed down so much and you want braking stability into slow corners. But the driver might try it and find that, actually, the part of the track where he most needs help is one of the higher-speed corners, so lowering the ride height will find him more lap time than he loses from any change in braking stability.
“Simulation still isn't perfect,” Greenwood continues, “and a computer-simulated lap – as opposed to the driver doing a lap in the simulator – will drive the car with more of an oversteer setup than a driver would, and get a quicker lap time. But in the real world it would be too much for the driver to hang on to.”
That says quite a lot coming from a guy who runs Timo Glock (RIGHT), an F1 driver with one of the most rally driver-like styles! But Greenwood's point is well made: The more oversteer a driver is comfortable with, the quicker the setup he can run. McLaren's technical director Paddy Lowe explains further: “We see from the data that Lewis [Hamilton] is fantastic at controlling oversteer. He can have massive levels of steering correction – to the extent that other drivers would be bitching like hell that the car was undrivable – and Lewis won't even mention it. With a driver like that, you're better equipped to push the boundaries to new levels.
“A lot of the performance limit of a car is set by stability; if your driver can't hang on to it, you have to introduce understeer in that zone. If you have a driver better able to deal with oversteer in zones that induce it, you'll have a less understeery car elsewhere and therefore more total grip over the whole lap. The great drivers – Ayrton Senna, Nigel Mansell, Michael Schumacher – all had that ability. Like-for-like, compared with other drivers, they wanted more front end.”
So elementary is Hamilton's ease with this trait, it caused McLaren to rethink the range in which its car could be set up. Pat Fry, now Ferrari's technical director, was at McLaren back in the winter of 2007-'08 and working with Lowe in getting out of the setup loop they had evolved over the years.
“We spent the whole of that winter changing the basic traits of our cars so that we'd no longer be so limited by understeer in slow corners,” recalls Fry, “and it took us all that time to get it to the point where we could run it like McLaren does now.
“At Ferrari, we're still in the same loop as McLaren was before we changed – and in 2011 that's hurt us as the blown diffusers have become more powerful. They generate a lot more grip obviously, but it's at the rear, so you need to have in your setup toolbox something that compensates for that, not just increase your understeer. And we've sort of run out of options at that end.”
But while dialing in as much oversteer as the driver can cope with will make for quick qualifying laps, it's not as simple as that once you introduce the complication of tire life to the equation and when the parc ferme regulations prevent you from having one setup for qualifying and another for the race. This year's Pirelli tires are weaker at the rear than the front, and so they often need protection from the setup. The title-winning Red Bull RB7 has been particularly hard on rubber – mainly on account of going faster than the others! – and, in several races, World Champion Sebastian Vettel had to live with more understeer than he'd ideally have chosen, just to limit the loads being put through the rears.
The way that Jenson Button's feel allows him to measure out tire life has also played its part in allowing him to be more competitive with teammate Hamilton than was the case last year. Hamilton's setups induce more performance degradation of the rear tires than Button's who can thereby lap fast for longer. This is what would have allowed him to beat Hamilton to the checkered flag at this year's Hungarian Grand Prix, irrespective of Hamilton's drive-through penalty.
The balance changes through a race, not only through tire performance but also the reducing fuel load. A full-tank car will tend to understeer, moving toward oversteer as the fuel load lightens. Obviously the setup has to take account of this as there are only a limited number of ways the driver has of changing things from the cockpit. The most significant of these are the differential settings, varying the pre-load via controls on the steering wheel. These are typically variable in three parts, comprising corner entry, mid-corner and corner exit. Greater locking of the diff gives better traction but more understeer on entry, especially in slower turns. Last year, the Lotus, HRT and Virgin teams all used an inadequate hydraulics system that came as part of a package with the Cosworth engine. Among its many failings was that it could not generate enough pressure to lock the diff at certain critical loads, giving those cars traction limitations as well as stability issues in higher-speed corners.
A race stint invariably brings further imperfections to setups mapped in the perfect conditions of simulation. At the Korean Grand Prix this year, Hamilton was finding increasing understeer and the team could see on the telemetry that there was a 10-point reduction in front downforce (measured by load sensors on the car). The explanation was only discovered post-race: the front wing slot gap was partially sealed by congealed rubber picked up from the track.
The aerodynamically crucial floors also degrade in performance through a race as their edges are rubbed on the track surface. A lot of attention is devoted to smoothing their extremities and they're covered with a silicon spray, making them more slippery to the air. Typically, aero losses from the floor alone from the start of the race to the end are in the order of 15-20 points – a difference of around 0.2sec per lap.
In a sport so machinery-dependent, we never get a definitive answer on which driver is actually doing the best job of pressing the pedals and turning the wheel. But achieving the optimum setup is inextricably linked with that skill set, the place where the visceral skills of the driver and the cerebral qualities of the engineer come together.
There are tiny operating parameters and everything requires constant monitoring and input. F1 cars are ridiculously sensitive, highly strung thoroughbreds that sit on a knife-edge of equilibrium that is constantly evolving – which is just as it should be. F1 isn't supposed to be easy or simple.
But for all that the processes are maintained on a knife-edge, the car must never feel like that to the driver. For him to do his best stuff requires the car beneath him to feel malleable, responsive to his every input with a fidelity that allows him to not even think about the mechanics of it all. The limit should be a place he can sit on with impunity while expressing his competitive desire. That's all about finding the appropriate setup.
Push the car hard enough and one end of it or the other runs out of grip. Which end and how predictable is the transition is what allows the driver to access that limit according to his personal preferences. But because of that trait of everything being in a state of evolution – the track, the car's specification from one race to the next, variations in track layout, etc. – that sweet spot needs to be constantly found and re-found. Adjustment of myriad setup tools – from simple suspension rates, tire pressures or front and rear wing levels to the more subtle aids of steering ratios, brake master cylinders, ride heights and an apparently limitless variety of electronic settings for engine, engine braking and differential settings – help the driver to find that place, with the aid of his race engineer and vehicle dynamicists.
A team used to arrive at a track with the setup spectrum theoretically unlimited but the tools for where on that spectrum to choose – the driver's feel and the intuitive knowledge of his engineer – still fairly basic. Today, with the huge advances made in simulation, a team arrives with 90 percent – maybe more – of the setup already defined. The big chunk of setup-derived lap time is done at the factory beforehand so that, at the track, the driver is working within parameters that can influence things only by a few tenths of a second.
Dave Greenwood is Marussia Virgin's chief engineer and was a vehicle dynamicist at the Renault team when it last won the World Championship, in 2006. He explains: “The aero levels most appropriate to the circuit and the ride-height range are set at the factory. The damping rates are set then, too, on the seven-post rig or on the simulated seven-poster. This is because the packaging of an F1 car is so tight that it would just be impractical to be changing dampers during the limited amount of running time you have on a grand prix weekend. It would be a nightmare. So what the driver has to play with at the track is a little bit of front wing flap angle, the spring rates and the various electronic settings.
“But you still need to check with the driver at the track, because the simulation is ‘perfect world.' For example, from India, a track with a lot of high-speed, long-duration corners, we arrived at Abu Dhabi, a track with mainly slow corners, so we ran a lower rear ride height because the car isn't being pressed down so much and you want braking stability into slow corners. But the driver might try it and find that, actually, the part of the track where he most needs help is one of the higher-speed corners, so lowering the ride height will find him more lap time than he loses from any change in braking stability.
“Simulation still isn't perfect,” Greenwood continues, “and a computer-simulated lap – as opposed to the driver doing a lap in the simulator – will drive the car with more of an oversteer setup than a driver would, and get a quicker lap time. But in the real world it would be too much for the driver to hang on to.”
That says quite a lot coming from a guy who runs Timo Glock (RIGHT), an F1 driver with one of the most rally driver-like styles! But Greenwood's point is well made: The more oversteer a driver is comfortable with, the quicker the setup he can run. McLaren's technical director Paddy Lowe explains further: “We see from the data that Lewis [Hamilton] is fantastic at controlling oversteer. He can have massive levels of steering correction – to the extent that other drivers would be bitching like hell that the car was undrivable – and Lewis won't even mention it. With a driver like that, you're better equipped to push the boundaries to new levels.
“A lot of the performance limit of a car is set by stability; if your driver can't hang on to it, you have to introduce understeer in that zone. If you have a driver better able to deal with oversteer in zones that induce it, you'll have a less understeery car elsewhere and therefore more total grip over the whole lap. The great drivers – Ayrton Senna, Nigel Mansell, Michael Schumacher – all had that ability. Like-for-like, compared with other drivers, they wanted more front end.”
So elementary is Hamilton's ease with this trait, it caused McLaren to rethink the range in which its car could be set up. Pat Fry, now Ferrari's technical director, was at McLaren back in the winter of 2007-'08 and working with Lowe in getting out of the setup loop they had evolved over the years.
“We spent the whole of that winter changing the basic traits of our cars so that we'd no longer be so limited by understeer in slow corners,” recalls Fry, “and it took us all that time to get it to the point where we could run it like McLaren does now.
“At Ferrari, we're still in the same loop as McLaren was before we changed – and in 2011 that's hurt us as the blown diffusers have become more powerful. They generate a lot more grip obviously, but it's at the rear, so you need to have in your setup toolbox something that compensates for that, not just increase your understeer. And we've sort of run out of options at that end.”
But while dialing in as much oversteer as the driver can cope with will make for quick qualifying laps, it's not as simple as that once you introduce the complication of tire life to the equation and when the parc ferme regulations prevent you from having one setup for qualifying and another for the race. This year's Pirelli tires are weaker at the rear than the front, and so they often need protection from the setup. The title-winning Red Bull RB7 has been particularly hard on rubber – mainly on account of going faster than the others! – and, in several races, World Champion Sebastian Vettel had to live with more understeer than he'd ideally have chosen, just to limit the loads being put through the rears.
The way that Jenson Button's feel allows him to measure out tire life has also played its part in allowing him to be more competitive with teammate Hamilton than was the case last year. Hamilton's setups induce more performance degradation of the rear tires than Button's who can thereby lap fast for longer. This is what would have allowed him to beat Hamilton to the checkered flag at this year's Hungarian Grand Prix, irrespective of Hamilton's drive-through penalty.
The balance changes through a race, not only through tire performance but also the reducing fuel load. A full-tank car will tend to understeer, moving toward oversteer as the fuel load lightens. Obviously the setup has to take account of this as there are only a limited number of ways the driver has of changing things from the cockpit. The most significant of these are the differential settings, varying the pre-load via controls on the steering wheel. These are typically variable in three parts, comprising corner entry, mid-corner and corner exit. Greater locking of the diff gives better traction but more understeer on entry, especially in slower turns. Last year, the Lotus, HRT and Virgin teams all used an inadequate hydraulics system that came as part of a package with the Cosworth engine. Among its many failings was that it could not generate enough pressure to lock the diff at certain critical loads, giving those cars traction limitations as well as stability issues in higher-speed corners.
A race stint invariably brings further imperfections to setups mapped in the perfect conditions of simulation. At the Korean Grand Prix this year, Hamilton was finding increasing understeer and the team could see on the telemetry that there was a 10-point reduction in front downforce (measured by load sensors on the car). The explanation was only discovered post-race: the front wing slot gap was partially sealed by congealed rubber picked up from the track.
The aerodynamically crucial floors also degrade in performance through a race as their edges are rubbed on the track surface. A lot of attention is devoted to smoothing their extremities and they're covered with a silicon spray, making them more slippery to the air. Typically, aero losses from the floor alone from the start of the race to the end are in the order of 15-20 points – a difference of around 0.2sec per lap.
In a sport so machinery-dependent, we never get a definitive answer on which driver is actually doing the best job of pressing the pedals and turning the wheel. But achieving the optimum setup is inextricably linked with that skill set, the place where the visceral skills of the driver and the cerebral qualities of the engineer come together.
Watch F1 races live here:
TheFastCastorSintiendo un auto de Formula 1
Al igual que cualquier auto de carreras, un coche de Fórmula 1 es como un organismo vivo, requiere una atención constante sólo para mantenerlo en funcionamiento. El aceite del motor tiene que ser pre-calentado al igual que los neumáticos. Los frenos no empiezan a funcionar correctamente hasta que los discos se encuentran en alrededor de 932 grados F, pero si se eleva la temperatura a 1.472 grados F por apenas un período de tiempo corto, se oxidan y se dañan.
Hay muchos parámetros de operación y todo requiere una vigilancia constante. Los coches de F1 son ridículamente sensibles, los pilotos se sientan en un pura sangre muy nervioso que está en constante evolución - que es como debe ser. La F1 no se supone que sea fácil ni simple.
Para que un piloto pueda entregar lo mejor de el, requiere que el auto que esta manejando sea maleable, que responda a cada una de sus decisiones con una fidelidad que le permita no pensar siquiera en la mecánica. Eso es encontrar la configuración adecuada.
Empujar el coche lo suficiente en diferentes direcciones es lo que permite al conductor acceder a esas configuraciones de acuerdo a sus preferencias personales. Pero debido a que todo esta en un estado constante de cambio, el punto ideal de configuracion debe ser constantemente re-encontrado. Ajuste de las tasas de suspensión, presión de los neumáticos, los niveles de alerón delantero y trasero, las relaciones de dirección, los cilindros de freno, altura del coche y una variedad aparentemente ilimitada de la configuración electrónica del motor, el frenado del motor y los ajustes de diferencial - ayudan al conductor a encontrar la configuracion ideal, con la ayuda de su ingeniero de pista.
Lo ideal para lograr la configuracion correcta, es saber interpretar lo que siente piloto arriba del auto. Hoy en día, con los grandes progresos realizados en la simulación, un equipo llega a una carrera con un 90 por ciento - quizás más - de la configuración definida. Gran parte de la configuración se realiza de antemano para que, en la pista, el piloto este trabajando dentro de los parámetros que pueden influir en los tiempos sólo en cuestion de décimas de segundo.
Dave Greenwood es ingeniero jefe de Marussia Virgin y fue jefe en dinámica de vehículos en el equipo Renault la última vez que ganó el Campeonato Mundial, en 2006. Él explica: "Los niveles de aerodinámica más adecuada para el circuito y el rango de altura de la carrocería se fijan de antemano. Las tasas de amortiguación se establecen a continuación, en el simulador. Esto se debe a que ajustar las suspensiones lleva mucho tiempo, no seria practico estar cambiando amortiguadores en el limitado tiempo de practicas que hay en un Gran Premio. Así que lo que el piloto tiene que probar en la pista son los angulos frontales de los alerones, los valores de los muelles (spring rates) y ajustes electrónicos diversos.
"La configuracion debe ser definidia con el piloto en pista, ya que la simulación esta basada en " mundo perfecto ". Por ejemplo, luego de correr en India, una pista con un montón de rectas y curvas de alta velocidad, llegamos a Abu Dhabi, una pista con curvas sobre todo lentas, así que hicimos un ajuste a la altura trasera para tener un menor recorrido porque el coche no está siendo presionado por mucha carga aerodinamica y se necesita estabilidad en las frenadas de curvas lentas. Sin embargo, el piloto podría tratar de encontrar que, en realidad, parte de la pista en la que más necesita ayuda es en las esquinas de mayor velocidad, por lo que bajar la altura de la carrocería le costara más tiempo de la vuelta de lo que gana en cualquier cambio en la estabilidad de los frenados.
"La simulación todavía no es perfecta", dice Greenwood, "y una vuelta simulada por computadora - en comparación con el piloto - conducirá el coche con una configuración con mas sobreviraje que un piloto, y obtendra una vuelta más rápida."
El técnico de McLaren, Paddy Lowe, explica: "Vemos en los datos que Lewis [Hamilton] es fantástico en el control de sobreviraje. Él puede tener enormes niveles de corrección de la dirección - en la medida en que los otros conductores se quejan que el coche es inmanejable - y Lewis ni siquiera lo menciona. Con un piloto de este nivel, se pueden empujar los límites a nuevos niveles.
"Muchos de los límites de potencia en un coche estan fijados por la estabilidad. Si usted tiene un piloto más capaz de lidiar con el sobreviraje, usted tiene un auto menos subvirador y por lo tanto una mayor adherencia total sobre toda la vuelta. Los grandes pilotos - Ayrton Senna, Nigel Mansell, Michael Schumacher - todos tenían esa capacidad."
Tan elemental es la facilidad de Hamilton, que causó que McLaren repensara el rango en el que podría evolucionar su auto. Pat Fry, actual director técnico de Ferrari, fue a McLaren en el invierno de 2007-'08 y trabajo con Lowe en cambiar el metodo de configuración que habían desarrollado a lo largo de los años.
"Nos pasamos todo el invierno cambiando los rasgos básicos de nuestros autos porque queriamos que no esten limitados por el subviraje en las curvas lentas", recuerda Fry, "y nos tomó todo ese tiempo para llegar al punto donde esta McLaren hace ahora."
Sin embargo, al pensar en el sobreviraje tambien hay que sumar a la ecuacion la vida útil del neumático, y las normas de parque cerrado que impiden tener una configuración de clasificación y otra para carrera. Los neumáticos Pirelli de 2011 fueron neumaticos más débiles en la parte trasera que en la parte delantera. El título de Red Bull RB7 ha sido practicamente ganado con las gomas duras - principalmente a causa de ir más rápido que los demás! - Y, en varias carreras, el campeón del mundo, Sebastian Vettel, tuvo que lidiar con más subviraje de lo que lo que el hubiera elegido, sólo para limitar las cargas que se somete a las ruedas traseras.
La forma en que siente el auto Jenson Button, le permite medir la vida del neumático. Esto también tiene que ver con que sea más competitivo que su compañero Hamilton. Las configuraciones de Hamilton provocan más la degradación del rendimiento de los neumáticos traseros que Button. Esto es lo que le ha permitido superar a Hamilton.
Un auto con tanque lleno-tenderá a subvirar, pasando a ser sobrevirante a medida que la carga de combustible se consume. Obviamente, la configuración tiene que tener en cuenta esta cuestion, ya que sólo hay un número limitado de cosas que puede hacer un piloto para cambiar las cosas desde la cabina. Los principales valores que puede cambiar son los valores diferenciales, la variación de la pre-carga a través de controles en el volante. Estos suelen ser variables en tres partes, que comprende la entrada en curva, mediados de curva y salida de las curvas. Mayor bloqueo del diferencial da una mejor tracción, pero más subviraje en la entrada. En el 2010, los equipos Lotus, HRT y Virgin utilizaban un inadecuado sistema hidráulico que vino como parte de un paquete con el motor Cosworth. Entre sus muchos defectos era que no podía generar suficiente presión para bloquear el diferencial en ciertas cargas críticas, dando a los coches limitaciones de tracción, así como problemas de estabilidad en curvas de alta velocidad.
En el Gran Premio de Corea de 2011, Hamilton fue encontrando cada vez mayor subviraje y el equipo pudo ver en la telemetría que se produjo una reducción de 10 puntos en la carga aerodinámica delantera (medida por los sensores de carga en el coche). La explicación no fue descubierta hasta después de la carrera.
En un deporte tan dependiente de la tecnologia, no tenemos una respuesta definitiva sobre el piloto que está haciendo el mejor trabajo de presionar los pedales y girar el volante. Pero lograr la configuración óptima está inextricablemente vinculado con el conjunto de habilidades, el lugar donde las habilidades viscerales del conductor y las características cerebrales de la ingeniería se unen.
Hay muchos parámetros de operación y todo requiere una vigilancia constante. Los coches de F1 son ridículamente sensibles, los pilotos se sientan en un pura sangre muy nervioso que está en constante evolución - que es como debe ser. La F1 no se supone que sea fácil ni simple.
Para que un piloto pueda entregar lo mejor de el, requiere que el auto que esta manejando sea maleable, que responda a cada una de sus decisiones con una fidelidad que le permita no pensar siquiera en la mecánica. Eso es encontrar la configuración adecuada.
Empujar el coche lo suficiente en diferentes direcciones es lo que permite al conductor acceder a esas configuraciones de acuerdo a sus preferencias personales. Pero debido a que todo esta en un estado constante de cambio, el punto ideal de configuracion debe ser constantemente re-encontrado. Ajuste de las tasas de suspensión, presión de los neumáticos, los niveles de alerón delantero y trasero, las relaciones de dirección, los cilindros de freno, altura del coche y una variedad aparentemente ilimitada de la configuración electrónica del motor, el frenado del motor y los ajustes de diferencial - ayudan al conductor a encontrar la configuracion ideal, con la ayuda de su ingeniero de pista.
Lo ideal para lograr la configuracion correcta, es saber interpretar lo que siente piloto arriba del auto. Hoy en día, con los grandes progresos realizados en la simulación, un equipo llega a una carrera con un 90 por ciento - quizás más - de la configuración definida. Gran parte de la configuración se realiza de antemano para que, en la pista, el piloto este trabajando dentro de los parámetros que pueden influir en los tiempos sólo en cuestion de décimas de segundo.
Dave Greenwood es ingeniero jefe de Marussia Virgin y fue jefe en dinámica de vehículos en el equipo Renault la última vez que ganó el Campeonato Mundial, en 2006. Él explica: "Los niveles de aerodinámica más adecuada para el circuito y el rango de altura de la carrocería se fijan de antemano. Las tasas de amortiguación se establecen a continuación, en el simulador. Esto se debe a que ajustar las suspensiones lleva mucho tiempo, no seria practico estar cambiando amortiguadores en el limitado tiempo de practicas que hay en un Gran Premio. Así que lo que el piloto tiene que probar en la pista son los angulos frontales de los alerones, los valores de los muelles (spring rates) y ajustes electrónicos diversos.
"La configuracion debe ser definidia con el piloto en pista, ya que la simulación esta basada en " mundo perfecto ". Por ejemplo, luego de correr en India, una pista con un montón de rectas y curvas de alta velocidad, llegamos a Abu Dhabi, una pista con curvas sobre todo lentas, así que hicimos un ajuste a la altura trasera para tener un menor recorrido porque el coche no está siendo presionado por mucha carga aerodinamica y se necesita estabilidad en las frenadas de curvas lentas. Sin embargo, el piloto podría tratar de encontrar que, en realidad, parte de la pista en la que más necesita ayuda es en las esquinas de mayor velocidad, por lo que bajar la altura de la carrocería le costara más tiempo de la vuelta de lo que gana en cualquier cambio en la estabilidad de los frenados.
"La simulación todavía no es perfecta", dice Greenwood, "y una vuelta simulada por computadora - en comparación con el piloto - conducirá el coche con una configuración con mas sobreviraje que un piloto, y obtendra una vuelta más rápida."
El técnico de McLaren, Paddy Lowe, explica: "Vemos en los datos que Lewis [Hamilton] es fantástico en el control de sobreviraje. Él puede tener enormes niveles de corrección de la dirección - en la medida en que los otros conductores se quejan que el coche es inmanejable - y Lewis ni siquiera lo menciona. Con un piloto de este nivel, se pueden empujar los límites a nuevos niveles.
"Muchos de los límites de potencia en un coche estan fijados por la estabilidad. Si usted tiene un piloto más capaz de lidiar con el sobreviraje, usted tiene un auto menos subvirador y por lo tanto una mayor adherencia total sobre toda la vuelta. Los grandes pilotos - Ayrton Senna, Nigel Mansell, Michael Schumacher - todos tenían esa capacidad."
Tan elemental es la facilidad de Hamilton, que causó que McLaren repensara el rango en el que podría evolucionar su auto. Pat Fry, actual director técnico de Ferrari, fue a McLaren en el invierno de 2007-'08 y trabajo con Lowe en cambiar el metodo de configuración que habían desarrollado a lo largo de los años.
"Nos pasamos todo el invierno cambiando los rasgos básicos de nuestros autos porque queriamos que no esten limitados por el subviraje en las curvas lentas", recuerda Fry, "y nos tomó todo ese tiempo para llegar al punto donde esta McLaren hace ahora."
Sin embargo, al pensar en el sobreviraje tambien hay que sumar a la ecuacion la vida útil del neumático, y las normas de parque cerrado que impiden tener una configuración de clasificación y otra para carrera. Los neumáticos Pirelli de 2011 fueron neumaticos más débiles en la parte trasera que en la parte delantera. El título de Red Bull RB7 ha sido practicamente ganado con las gomas duras - principalmente a causa de ir más rápido que los demás! - Y, en varias carreras, el campeón del mundo, Sebastian Vettel, tuvo que lidiar con más subviraje de lo que lo que el hubiera elegido, sólo para limitar las cargas que se somete a las ruedas traseras.
La forma en que siente el auto Jenson Button, le permite medir la vida del neumático. Esto también tiene que ver con que sea más competitivo que su compañero Hamilton. Las configuraciones de Hamilton provocan más la degradación del rendimiento de los neumáticos traseros que Button. Esto es lo que le ha permitido superar a Hamilton.
Un auto con tanque lleno-tenderá a subvirar, pasando a ser sobrevirante a medida que la carga de combustible se consume. Obviamente, la configuración tiene que tener en cuenta esta cuestion, ya que sólo hay un número limitado de cosas que puede hacer un piloto para cambiar las cosas desde la cabina. Los principales valores que puede cambiar son los valores diferenciales, la variación de la pre-carga a través de controles en el volante. Estos suelen ser variables en tres partes, que comprende la entrada en curva, mediados de curva y salida de las curvas. Mayor bloqueo del diferencial da una mejor tracción, pero más subviraje en la entrada. En el 2010, los equipos Lotus, HRT y Virgin utilizaban un inadecuado sistema hidráulico que vino como parte de un paquete con el motor Cosworth. Entre sus muchos defectos era que no podía generar suficiente presión para bloquear el diferencial en ciertas cargas críticas, dando a los coches limitaciones de tracción, así como problemas de estabilidad en curvas de alta velocidad.
En el Gran Premio de Corea de 2011, Hamilton fue encontrando cada vez mayor subviraje y el equipo pudo ver en la telemetría que se produjo una reducción de 10 puntos en la carga aerodinámica delantera (medida por los sensores de carga en el coche). La explicación no fue descubierta hasta después de la carrera.
En un deporte tan dependiente de la tecnologia, no tenemos una respuesta definitiva sobre el piloto que está haciendo el mejor trabajo de presionar los pedales y girar el volante. Pero lograr la configuración óptima está inextricablemente vinculado con el conjunto de habilidades, el lugar donde las habilidades viscerales del conductor y las características cerebrales de la ingeniería se unen.
Mira las carreras de F1 en vivo aqui:
TheFastCastorIs it worth breaking a contract for one of the unemployed drivers?
There are only two seats available in Formula One (Williams and HRT), some experts say the seats that are already taken by contractual obligations are not really confirmed for 2012. There is a large market of unemployed drivers, such as Jerome D'Ambrosio, Sebastien Buemi, Alguersuari, Rubens Barrichello, Bruno Senna, Karun Chandhok, Narain Karthikeyan, Vitaly Petrov, Adrian Sutil, Nick Heidfeld and Tonio Liuzzi (and all the drivers of the school category GP2 and other series).
The main issue at is money and how much a driver can bring to a team. Everyone is in need of cash and they are willing to prioritize the economic cost of talent. Sky commentator and former driver, Martin Brundle, suggests through his Twitter account that he believes that Petrov will occupy a place in the team Caterham (ex Team Lotus), but the team has already announced its drivers for 2012. Others believe that the Russian driver can make a deal with Marussia Virgin Racing, but the team has already signed Timo Glock and Charles Pic.
Rubens Barrichello showed great potential with Williams F1, but now he is waiting for news from the English team. Jerome D'Ambrosio told the German press that is hard to be a Belgian with the poor sponsorship of his country. It is said that some team may break his contract with one of its drivers in order to have Adrian Sutil.
When many of the teams confirmed their drivers, it began the game of musical chairs. For example, when Lotus Renault GP announced their drivers Romain Grosjean and Kimi Raikkonen, Toro Rosso announced that they would not count Alguersuari Buemi for 2012, and the announcement of Force India, when they announced that Sutil was out of the team, things started to get interesting for small teams that need talent and cash.
To make a commitment betting everything for a young driver with cash in the bank and no experience in F1 is one thing, but being able to gain the services of Sutil, Hulkenberg, Buemi, Alguersuari, D'Ambrosio, Senna and Petrov begins to have a lot of sense. The big question is, does it make sense to brake a contract with Jarno Trulli, Rubens Barrichello and Felipe Massa? Where to stop? Michael Schumacher? Mark Webber? there are too many good drivers, young people with cash to bear even older drivers?
The main issue at is money and how much a driver can bring to a team. Everyone is in need of cash and they are willing to prioritize the economic cost of talent. Sky commentator and former driver, Martin Brundle, suggests through his Twitter account that he believes that Petrov will occupy a place in the team Caterham (ex Team Lotus), but the team has already announced its drivers for 2012. Others believe that the Russian driver can make a deal with Marussia Virgin Racing, but the team has already signed Timo Glock and Charles Pic.
Rubens Barrichello showed great potential with Williams F1, but now he is waiting for news from the English team. Jerome D'Ambrosio told the German press that is hard to be a Belgian with the poor sponsorship of his country. It is said that some team may break his contract with one of its drivers in order to have Adrian Sutil.
When many of the teams confirmed their drivers, it began the game of musical chairs. For example, when Lotus Renault GP announced their drivers Romain Grosjean and Kimi Raikkonen, Toro Rosso announced that they would not count Alguersuari Buemi for 2012, and the announcement of Force India, when they announced that Sutil was out of the team, things started to get interesting for small teams that need talent and cash.
To make a commitment betting everything for a young driver with cash in the bank and no experience in F1 is one thing, but being able to gain the services of Sutil, Hulkenberg, Buemi, Alguersuari, D'Ambrosio, Senna and Petrov begins to have a lot of sense. The big question is, does it make sense to brake a contract with Jarno Trulli, Rubens Barrichello and Felipe Massa? Where to stop? Michael Schumacher? Mark Webber? there are too many good drivers, young people with cash to bear even older drivers?
Watch F1 races live here:
TheFastCastor¿Vale la pena romper un contrato por alguno de los pilotos disponibles?
Sólo quedan dos asientos disponibles en la Fórmula Uno (Williams y HRT), algunos expertos aseguran que los asientos que ya estan tomados por obligación contractual no estan confirmados para el año 2012. Existe un gran mercado de pilotos desocupados, tales como Jerome D'Ambrosio, Sebastien Buemi, Jaime Alguersuari, Rubens Barrichello, Bruno Senna, Karun Chandhok, Narain Karthikeyan, Vitaly Petrov, Adrian Sutil, Nick Heidfeld y Vitantonio Liuzzi (así como todos los pilotos de la categoria escuela GP2 y demas semilleros)
El principal problema que nos ocupa es el dinero y lo mucho que un conductor puede llevar a un equipo. Los equipos están necesitados de dinero en efectivo y dispuestos a priorizar este costado economico por sobre el talento. El comentarista de Sky y ex piloto, Martin Brundle, sugiere a través de su cuenta de Twitter que cree que Petrov va a ocupar un lugar en el equipo Caterham (ex equipo Lotus), aunque el equipo ya ha anunciado sus pilotos para 2012. Otros creen que el piloto ruso puede hacer un acuerdo con Marussia Virgin Racing, pero el equipo ya ha firmado Timo Glock y Charles Pic.
Rubens Barrichello demostro un gran potencial al firmar con Williams F1, ahora esta esperando noticias del equipo ingles. Jerome D'Ambrosio dijo a la prensa alemana que es difícil ser un belga con el poco patrocinio de su pais. Se dice que algun equipo podria romper su contrato con alguno de sus pilotos para poder contar con Adrian Sutil.
Cuando muchos de los equipos confirmaron sus pilotos, comenzo el juego de las sillas musicales. Por ejemplo, cuando Lotus Renault GP anunció a Kimi Raikkonen y Romain Grosjean como sus conductores, Toro Rosso anuncio que no contaria con Buemi y Alguersuari para el 2012, así como el anuncio de Force India, cuando anunciaban que no contarian con Sutil en el equipo, las cosas empezaron a ponerse interesante para los pequeños equipos que necesitan talento y dinero en efectivo.
Hacer una apuesta por un joven con dinero en efectivo en el bolsillo y sin experiencia en la F1 es una cosa, pero ser capaz de hacerse con los servicios de Sutil, Hulkenberg, Buemi, Alguersuari, D'Ambrosio, Senna o Petrov empieza a tener un montón de sentido. La gran pregunta es, ¿tiene sentido como para hechar a Jarno Trulli, Rubens Barrichello y Felipe Massa, posiblemente, dando de baja los contratos que poseen? ¿Dónde parar? Michael Schumacher? Mark Webber? hay demasiados buenos conductores, jóvenes con dinero en efectivo incluso para cargar con conductores de edad avanzada?
El principal problema que nos ocupa es el dinero y lo mucho que un conductor puede llevar a un equipo. Los equipos están necesitados de dinero en efectivo y dispuestos a priorizar este costado economico por sobre el talento. El comentarista de Sky y ex piloto, Martin Brundle, sugiere a través de su cuenta de Twitter que cree que Petrov va a ocupar un lugar en el equipo Caterham (ex equipo Lotus), aunque el equipo ya ha anunciado sus pilotos para 2012. Otros creen que el piloto ruso puede hacer un acuerdo con Marussia Virgin Racing, pero el equipo ya ha firmado Timo Glock y Charles Pic.
Rubens Barrichello demostro un gran potencial al firmar con Williams F1, ahora esta esperando noticias del equipo ingles. Jerome D'Ambrosio dijo a la prensa alemana que es difícil ser un belga con el poco patrocinio de su pais. Se dice que algun equipo podria romper su contrato con alguno de sus pilotos para poder contar con Adrian Sutil.
Cuando muchos de los equipos confirmaron sus pilotos, comenzo el juego de las sillas musicales. Por ejemplo, cuando Lotus Renault GP anunció a Kimi Raikkonen y Romain Grosjean como sus conductores, Toro Rosso anuncio que no contaria con Buemi y Alguersuari para el 2012, así como el anuncio de Force India, cuando anunciaban que no contarian con Sutil en el equipo, las cosas empezaron a ponerse interesante para los pequeños equipos que necesitan talento y dinero en efectivo.
Hacer una apuesta por un joven con dinero en efectivo en el bolsillo y sin experiencia en la F1 es una cosa, pero ser capaz de hacerse con los servicios de Sutil, Hulkenberg, Buemi, Alguersuari, D'Ambrosio, Senna o Petrov empieza a tener un montón de sentido. La gran pregunta es, ¿tiene sentido como para hechar a Jarno Trulli, Rubens Barrichello y Felipe Massa, posiblemente, dando de baja los contratos que poseen? ¿Dónde parar? Michael Schumacher? Mark Webber? hay demasiados buenos conductores, jóvenes con dinero en efectivo incluso para cargar con conductores de edad avanzada?
Mira las carreras de F1 en vivo aca:
TheFastCastor
Subscribe to:
Posts (Atom)